4768 Statistics 3

\begin{tabular}{|c|c|c|c|c|}
\hline \& \[
\begin{aligned}
\& W \sim N(14,0.552) \\
\& G \sim N(144, \\
\& \left.0.9^{2}\right)
\end{aligned}
\] \& \& When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only. \& \\
\hline \& \[
\begin{aligned}
\mathrm{P}(G<145) \& =\mathrm{P}\left(Z<\frac{145-144}{0.9}=1.1111\right) \\
\& =0.8667
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
A1
\end{tabular} \& \begin{tabular}{l}
For standardising. Award once, here or elsewhere. \\
c.a.o.
\end{tabular} \& 3 \\
\hline \& \[
\begin{aligned}
\& W+G \sim \mathrm{~N}(14+144=158, \\
\& \left.\quad \sigma^{2}=0.55^{2}+0.9^{2}=1.1125\right) \\
\& \mathrm{P}(\text { this }>160)= \\
\& \mathrm{P}\left(\mathrm{Z}>\frac{160-158}{1.0547}=1.896\right)=1-0.9710=0.0290
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
B1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Mean. \\
Variance. Accept sd (= 1.0547...). \\
c.a.o.
\end{tabular} \& 3 \\
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\& H=W_{1}+\ldots+W_{7}+G_{1}+\ldots+G_{6} \sim \mathrm{~N}(962, \\
\& \left.\sigma^{2}=0.55^{2}+\ldots+0.55^{2}+0.9^{2}+\ldots+0.9^{2}=6.9775\right) \\
\& \begin{aligned}
\& \mathrm{P}(960<\text { this }<965)= \\
\& \mathrm{P}\left(\frac{960-962}{2 \cdot 6415}\right.\left.=-0.7571<Z<\frac{965-962}{2 \cdot 6415}=1.1357\right) \\
\&=0.8720-(1-0.7755)=0.6475
\end{aligned}
\end{aligned}
\] \\
Now want \(P(B(4,0.6475) \geq 3)\)
\[
\begin{aligned}
\& =4 \times 0.6475^{3} \times 0.3525+0.6475^{4} \\
\& =0.38277+0.17577=0.5585
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
M1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Mean. \\
Variance. Accept sd (= 2.6415). \\
Two-sided requirement. \\
c.a.o. \\
Evidence of attempt to use binomial. \\
ft c's \(p\) value. \\
Correct terms attempted. ft c's \(p\) \\
value. Accept \(1-\mathrm{P}(\ldots \leq 2)\) \\
c.a.o.
\end{tabular} \& 7 \\
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
D=H_{1}-H_{2} \sim \mathrm{~N} \& (0, \\
\& 6.9775+6.9775=13.955)
\end{aligned}
\] \\
Want \(h\) s.t. \(\mathrm{P}(-h<D<h)=0.95\) \\
i.e. \(P(D<h)=0975\)
\[
\therefore h=\sqrt{13.955} \times 1.96 \quad=7.32
\]
\end{tabular} \& B1
B1
M1

B1

A1 \& | Mean. (May be implied.) |
| :--- |
| Variance. Accept sd (= 3.7356). Ft $2 \times$ c's 6.9775 from (iii). Formulation of requirement as 2-sided. |
| For 1.96 |
| c.a.o. | \& 5

\hline \& \& \& \& 18

\hline
\end{tabular}

			All correct.	
(iv)	$n \times 1.96 \times \sqrt{\frac{0.006}{n}}<0.025$ M1 So take $n=148$ Set up appropriate inequation. Condone an equation. Attempt to rearrange and solve. A1	A1c.a.o. (expressed as an integer). S.C. Allow max M1A1(c.a.o.) when the factor "2" is missing. $(n>36.879)$	3	
				19

Q4	$\mathrm{f}(x)=\frac{2 x}{\lambda^{2}} \text { for } 0<x<\lambda, \lambda>0$			
(i)	$\mathrm{f}(x)>0$ for all x in the domain. $\int_{0}^{\lambda} \frac{2 x}{\lambda^{2}} \mathrm{~d} x=\left[\frac{x^{2}}{\lambda^{2}}\right]_{0}^{\lambda}=\frac{\lambda^{2}}{\lambda^{2}}=1$	$\begin{aligned} & \text { E1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Correct integral with limits. Shown equal to 1.	3
(ii)	$\begin{gathered} \mu=\int_{0}^{\lambda} \frac{2 x^{2}}{\lambda^{2}} \mathrm{~d} x=\left[\frac{2 x^{3} / 3}{\lambda^{2}}\right]_{0}^{\lambda}=\frac{2 \lambda}{3} \\ \mathrm{P}(X<\mu)=\int_{0}^{\mu} \frac{2 x}{\lambda^{2}} \mathrm{~d} x=\left[\frac{x^{2}}{\lambda^{2}}\right]_{0}^{\mu} \\ =\frac{\mu^{2}}{\lambda^{2}}=\frac{4 \lambda^{2} / 9}{\lambda^{2}}=\frac{4}{9} \end{gathered}$ which is independent of λ.	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Correct integral with limits. c.a.o. Correct integral with limits. Answer plus comment. ft c's μ provided the answer does not involve λ.	4
(iii)	$\begin{aligned} & \text { Given } \mathrm{E}\left(X^{2}\right)=\frac{\lambda^{2}}{2} \\ & \sigma^{2}=\frac{\lambda^{2}}{2}-\frac{4 \lambda^{2}}{9}=\frac{\lambda^{2}}{18} \end{aligned}$	M1 A1	Use of $\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}$. c.a.o.	2
(iv)	Probability 0.18573 0.25871 Expected f 9.2865 12.9355$\begin{aligned} X^{2} & =3.0094+0.2896+0.1231+3.5152 \\ & =6.937(3) \end{aligned}$ Refer to χ_{3}^{2}. Upper 5\% point is 7.815 . Not significant. Suggests model fits the data for these jars. But with a 10% significance level (cv = 6.251) a different conclusion would be reached.	0.36983 18.4915 $\left\lvert\, \begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { E1 }\end{aligned}\right.$	0.18573 9.2865 Probs $\times 50$ for expected frequencies. All correct. Calculation of X^{2}. c.a.o. Allow correct df (= cells - 1) from wrongly grouped table and ft. Otherwise, no ft if wrong. $\mathrm{P}\left(X^{2}>6.937\right)=0.0739 .$ No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. Any valid comment which recognises that the test statistic is close to the critical values.	9
				18

