PMT

4768 Statistics 3

Q1	W ~ N(14, 0.552)		When a candidate's answers	
	<i>G</i> ~ N(144, 0.9 ²)		suggest that (s)he appears to have neglected to use the difference columns of the	
			Normal distribution tables	
			penalise the first occurrence	
			oniy.	
(i)	$P(G < 145) = P\left(Z < \frac{145 - 144}{0.9} = 1.1111\right)$	M1 A1	For standardising. Award once, here or elsewhere.	
	= 0.8667	A1	c.a.o.	3
(ii)	$W + G \sim N(14 + 144 = 158,$	B1	Mean.	
	$\sigma^2 = 0.55^2 + 0.9^2 = 1.1125$)	B1	Variance. Accept sd (= 1.0547).	
	P(this > 160) =			
	$P\left(Z > \frac{160 - 158}{1.0547} = 1.896\right) = 1 - 0.9710 = 0.0290$	A1	c.a.o.	3
(iii)	$H = W + + W + G + + G \sim N(962)$	R1	Mean	
()	$\sigma^2 = 0.55^2 + + 0.55^2 + 0.9^2 + + 0.9^2 = 6.9775)$	B1	Variance Accent sd (-2.6415)	
	P(960 < this < 965) =	M1	Two-sided requirement.	
	$P\left(\frac{960 - 962}{2 \cdot 6415} = -0.7571 < Z < \frac{965 - 962}{2 \cdot 6415} = 1.1357\right)$			
	= 0.8720 - (1 - 0.7755) = 0.6475	A1	c.a.o.	
	Now want $P(B(4, 0.6475) \ge 3)$	M1	Evidence of attempt to use binomial.	
	$= 4 \times 0.6475^3 \times 0.3525 + 0.6475^4$	M1	tt c's p value. Correct terms attempted. ft c's p	
	= 0.38277 + 0.17577 = 0.5585	A1	C.a.o.	7
(iv)	$D = H_1 - H_2 \sim \mathcal{N}(0,$	B1	Mean. (May be implied.)	
	6.9775 + 6.9775 = 13.955)	B1	Variance. Accept sd (= 3.7356).	
	Want <i>h</i> s.t. $P(-h < D < h) = 0.95$	M1	Ft 2 x c's 6.9775 from (iii). Formulation of requirement as	
	i.e. P(<i>D</i> < <i>h</i>) = 0 975		z-siueu.	
	$h = \sqrt{13.955} \times 1.96 = 7.32$	B1	For 1.96.	_
		A1	C.a.o.	5
				18

Mark Scheme

PMT

Q2							
(i)	$H_0: \mu = 1$ $H_1: \mu < 1$	B1	B1 Both hypotheses. Hypotheses in words only must include "population". B1 For adequate verbal definition. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\overline{X} =$ " or similar unless \overline{X} is clearly and explicitly stated to be a <u>population</u> mean.				
	where μ is the mean weight of the cakes.	B1					
	$\overline{x} = 0.957375$ $s_{n-1} = 0.07314(55)$	B1	$s_n = 0.06842$ but do <u>NOT</u> allow this here or in construction of				
	Test statistic is $\frac{0.957375 - 1}{\frac{0.07314}{\sqrt{8}}}$	M1	Allow c's \overline{x} and/or s_{n-1} . Allow alternative: 1 + (c's – 1.895) $\times \frac{0.07314}{\sqrt{8}}$ (= 0.950997)				
			for subsequent comparison with \overline{x} . (Or \overline{x} – (c's –1.895) $\times \frac{0.07314}{\overline{x}}$				
	= -1.648(24).	A1	$\sqrt{8}$ (= 1.006377) for comparison with 1.) c.a.o. but ft from here in any case if wrong. Use of $1 - \overline{x}$ scores M1A0, but ft.				
	Refer to t ₇ .	M1	No ft from here if wrong.				
	Single-tailed 5% point is –1.895.	A1	P(t < -1.648(24)) = 0.0716. Must be minus 1.895 unless absolute values are being compared. No ft from here if wrong.				
	Not significant. Insufficient evidence to suggest that the cakes are underweight on average.	A1 A1	ft only c's test statistic. ft only c's test statistic.	9			
(ii)	CI is given by $0.957375 \pm 2.365 \times \frac{0.07314}{\sqrt{8}}$	M1 B1 M1					
	= 0.957375 ± 0.061156= (0.896(2), 1.018(5))	A1	c.a.o. Must be expressed as an interval. ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_7 is OK.	4			
(iii)	$\overline{x} \pm 1.96 \times \sqrt{\frac{0.006}{n}}$	M1 B1 A1	Structure correct, incl. use of Normal. 1.96.	3			

Mark Scheme

June 2009

			All correct.	
(iv)	$2 \times 1.96 \times \sqrt{\frac{0.006}{n}} < 0.025$	M1	Set up appropriate inequation. Condone an equation.	
	$n > \left(\frac{2 \times 1.96}{0.025}\right)^2 \times 0.006 = 147.517$	M1	Attempt to rearrange and solve.	
	So take <i>n</i> = 148	A1	c.a.o. (expressed as an integer). S.C. Allow max M1A1(c.a.o.) when the factor "2" is missing. (n > 36.879)	3
				19

Q3														
(i)	For a systematic sample													
	 she needs a list of all staff 							E1						
	 with no cycles in the list. 							E1						
	All staff equally likely to be chosen if she													
	• cho	oses a	randor	n star	t betwe	een 1 a	and	E1						
	10				h			El						
	Iner		ses eve	ery 10		o not	-	E 1						F
	NUL SIII	nles ar		ampiii ihlo	ig sinc	enora								5
	3411	pies ai	c p033	ibic.										
(ii)	Nothing	is kno	wn abo	out the	back	around		E1	Any ref	erence	to un	known		
``	popi	ulation				5			distribu	tion or	"non-p	aramet	ric"	
									situatio	n.				
	of dif	ference	es betw	veen tl	ne sco	res.		E1	Any ref	erence	to			
		_							pairing/differences.					
	$H_0: m = 0$								Both hypotheses. Hypotheses in					
	H ₁ : <i>m</i> ≠	0						D 4	words c	only mu	ist incl	ude		
	where I	<i>n</i> is the	e popu	lation	media	n		B1	"popula	tion".		ماملانمانا	~ ~	4
	une	rence i	or the	scores	5.				FOI AUE	quate	verbai	dennitio	on.	
(iii)														
``	Diff	-0.8	-2.6	8.6	6.2	6.0	-3.6	-2.4	4 -0.4	-4.0	5.6	6.6	2.2	
	Rank	2	5	12	10	9	6	4	1	7	8	11	3	
								M1	For differences. ZERO in this					
									section	if differ	rences	s not use	ed.	
								M1	For ran	KS.				
	14/ 1			6.7	25			A1 D1	ft from here if ranks wrong.					
	$VV_{-} = 1$	+ 2 + 4	+ 5 +	0+/:	= 25			ы	(OF VV ₊ =	= 3 + 8	+9+	10 + 11	+ 12	
									= 55)					
	Refer to	o tables	s of Wil	coxon	paired	d (/sind	ale	M1	No ft from here if wrong.					
	sample) statistic for $n = 12$. Lower (or upper if 53 used) 2½% tail is 13											3		
									i.e. a 2-	tail tes	t. No f	t from h	ere if	
	(or 65 if 53 used).								wrong.					
	Result is not significant.							A1	ft only c's test statistic.					
	No evidence to suggest a preference for						A1	ft only c	's test	statist	ic.		8	
	one of the uniforms.													
														17
L														17

Mark Scheme

04	2				
64	$f(x) = \frac{2x}{\lambda^2}$ for $0 < x < \lambda$, $\lambda > 0$				
	λ				
(i)	f(x) > 0 for all x in the domain	F1			
(1)	$\int 2^{\lambda} d^{\lambda}$	M1	Correct integral with limits		
	$\int_{-\infty}^{\infty} \frac{2x}{x^2} dx = \left \frac{x^2}{x^2} \right _{-\infty}^{\infty} = \frac{\lambda^2}{x^2} = 1$				
	$\begin{bmatrix} 3 & \lambda^2 \\ \lambda^2 \end{bmatrix}_0 = \lambda^2$	A1	Shown equal to 1.	3	
(ii)	$\left[2x^{2}\right]^{\lambda}$ $\left[2x^{3}/3\right]^{\lambda}$ 2λ	M1	Correct integral with limits.		
	$\mu = \int_0^\infty \frac{dx}{\lambda^2} dx = \left \frac{dx}{\lambda^2} \right ^\infty = \frac{dx}{3}$				
		A1	c.a.o.		
	$P(X < \mu) = \int_{-\infty}^{\mu} \frac{2x}{2x} dx = \left[\frac{x^2}{2}\right]_{-\mu}^{\mu}$	N/1	Corroct integral with limits		
	$\begin{bmatrix} 1 & (\lambda^2) & J_0 & \lambda^2 \end{bmatrix}_0^2$		Correct integral with limits.		
	$\mu^2 = 4\lambda^2/9 = 4$				
	$=\frac{\lambda^2}{\lambda^2}=\frac{\lambda^2}{\lambda^2}=\frac{\lambda^2}{2}$				
	which is independent of λ .	A1	Answer plus comment. ft c's μ	4	
	•		provided the answer does not		
			involve λ .		
(111)	Given $E(X^2) = \frac{\lambda^2}{\lambda^2}$				
	2				
	$\sigma^2 = \frac{\lambda^2}{\lambda^2} - \frac{4\lambda^2}{\lambda^2} = \frac{\lambda^2}{\lambda^2}$	M1	Use of $Var(X) = E(X^2) - E(X)^2$.		
	2 9 18	۸1	6.2.0	2	
			C.a.U.	2	
(iv)		l			
()	Probability 0.18573 0.25871 0.	36983	3 0.18573		
	Expected f 9.2865 12.9355 18	3.4915	5 9.2865		
		M1	Probs \times 50 for expected		
		A1	frequencies.		
		•••	All correct.		
	$X^2 = 3.0094 + 0.2896 + 0.1231 + 3.5152$	M1	Calculation of X ² .		
	= 6.937(3)	AT	c.a.o.		
	Refer to w^2	M1	Allow correct df (= cells -1) from		
	χ_3 .		wrongly grouped table and ft.		
			Otherwise, no ft if wrong.		
			$P(X^2 > 6.937) = 0.0739.$		
	Upper 5% point is 7.815.	A1	No ft from here if wrong.		
	Not significant.	A1	ft only c's test statistic.		
	Suggests model fits the data for these jars.	A1	tt only c's test statistic.		
	But with a 10% significance level (cv =	1 ⊨1	Any valid comment which	9	
			is close to the critical values		
				18	
		1		10	